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1. INTRODUCTION

Suppose that E is either the space qTN) or L 1(TN), N ~ 1. It is known
that E does not admit convergence in norm for Fourier series over squares or
spheres. On the other hand, it is known that if the kth modulus of continuity
of a function J E E satisfies the condition

Wk(t, J) = o(llog(t)!-N) as t -+ 0 (1)

in the case of squares (for some k ~ 1), or if N ~ 2,

as t -+ 0 (2)

in the case of spheres (for some k ~ (N - 1)/2), then the Fourier series ofJ
converges to J in the norm of E. As a special case of a theorem of
Zhizhiashvili [15, 16] one knows that (1) is the best condition on J assuring
norm convergence of its Fourier series over squares, in the sense that the
small 0 cannot be replaced by large O.

In this paper we first show that in the same sense (2) is the best possible
condition on J assuring norm convergence of its Fourier series over spheres.
In the case of uniform convergence, I1'in (see [1]) had, amongst other things,
proved the following weaker result: ifJis in the Holder class Ca(T N

) for a =

(N - 1)/2 (this implies (2», then the Fourier series of J over spheres
converges uniformly to f Furthermore, the index (N - 1)/2 is sharp. (See [11
for the definition of C a (TN).)
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Our method is quite general, and may be used to obtain analogous results
for the divergence of Fourier series over squares or cylinders, for example.
Indeed, we are also able to obtain analogous results in the context of
compact Riemannian symmetric spaces of rank one. One of the tools of our
proof is an analogue of the classical Bernstein inequality. It will be evident
from the proof that the restriction to the rank one case is necessary only
because of the current lack of good estimates for the relevant Lebesgue
constants.

2. MULTIPLE FOURIER SERIES

In this section we generally adopt the notation of [12], and use [9] as a
general reference. We consider spherical partial sums

Sr(f)(x)= L ](m)ehim.x=(Dr*f)(x),
1m! <,r

where

D (x) = "\' ehim .xr ~ ,
Iml <,r

these sums being extended over {m=(ml, ... ,mN)EZ N: Iml=
(mi + ... + m~)I/2 ,,;;: r}. If E = C(lrN) or L I (lrN) and if s E {O, I,... }, we say
that fEE(S) if for each multi-index fJ=(fJl' ...,fJN)EZ~ with
fJI + ... + fJN = s, the partial derivative Dilf exists in the norm sense. We then
write wk(t, PS)) for the sum of the moduli of continuity wk(t, DIlf) over all
such fJ.

The letter C denotes a positive constant which may vary from line to line.

THEOREM A. Assume that N ~ 2.

(a) Suppose that fEE and that (for some k > (N - 1)/2)

as t -> 0.

Then

in E as r -> 00.

(b) There is a function FEE such that (for all k > (N - 1)/2)
wk(t, F) = O(t(N- Il/2) as t -> 0, but Dr * F does not converge to F. In fact, F
can be chosen so thqt FE E(s) and w 2(t, F(S») = O(t(N-I)/2-S), where s is the
largest integer < (N - 1)/2.
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Proof Babenko (see [11 for a proof) has shown that there are constants
Cl' C2 > 0 such that

C r(N~ 1)/2 ~ liD II &: C r(N~ 1)/2
I "" r I "" 2 for all r> O. (3)

The proof of (a) may be obtained in the standard way from the multi­
dimensional Jackson approximation theorem and the right-hand inequality in
(3).

For the proof of (b), first pick a number a > I such that Cia (N ~ I l/2 > C 2'

Since sup{11 g *III: lEE, 11/11 :::;; I} = II gill for gEL 1(lr"'), we can, for each
r> 0, pick/rEE with 111;'11:::;; 1 and II(Dar-Dr) *Irll> Cr(N-l)/2. Now take
any ~ in the Schwartz space Y(IR N

) such that ¢(e) = 1 if I :::;; lei:::;; a and
¢(e) = 0 if lei E G, 2a). For each r> 0 define sr on T" by

Then Ilsrlll:::;; II~III follows from the Poisson summation formula. For each
r> 0 we set gr = Ir * sr' It is clear that

II grll:::;; C,

II(D ar - Dr) * grll >Cr(N-I)/2

and

(4)

(5)

r
unless "2 < Iml < 2ar. (6)

Now write q = 4a and Gj for gq}' Define FEE by

00

F= ,~ q-j(N~I)/2Gj'

j=O

It follows from (4) that F is well defined, while from (5) and (6) that

Thus Dr * F does not converge to F in E.
Now for any multi-index fJ= (J31"'.,fJN)E l~ with fJI + ... +fJN=S,

where S is defined above, Bernstein's inequality and (6) show that
IIDIlGjl1 :::;; C~s. It follows that FE E(S). Now let 0 < t < 1 and let M be the
largest integer such that qM:::;; t -I. Using the estimate 11.1 ~(DIlG)11 :::;;
ClhI 2 qj(2+S) for j:::;;M, which follows from Bernstein's inequality, and the
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estimate IILl ~(D/}Gj)11 ~ CqjS for j >M, and the fact that 2 + s > (N - 1)/2,
we see that

M 00

IILl~(D/}F)11 ~ c Ihl 2 ~ qj(2+S-(N-I)/2) + C '" q-i«N-I)/2-S)
j=O i~M+ I

~ C Ihl 2 qM(2+S-IN-l)/2) + Cq-M«N--I)/2-S)

if Ihl ~ t.

Thus w 2(t, F lS ») ~ Ct(N-I)/2-s.

Remarks. (i) If N is even, then s = I(N - 1)/2], and we may replace
w 2(t,F

1S ») by wl(t,F(S»), still obtaining w 1(t,F(S»)=0(t l /2). For N odd, so
that s = (N - 1)/2 - 1, the technique of the proof yields the estimate
wl(t,FIS»)=O(tllogtl), so that we must use W2' which satisfies
w 2(t, F(S») = O(t).

(ii) Let us indicate the modifications to the above proof which we can
make to obtain the analogous result for the divergence of Fourier series over
squares. The estimate II Dar - Drill ~ C(log rt clearly holds for a = 2, Dr

now denoting the Dirichlet kernel L e2rrim .x, the sum being over 1m =
(mj,...,mN)EIN : Imjl~r for eachj}. The function F is defined by F=
Lj~o q-iNGj , where Gj = gr for r = qqJ, and q = 4a as before. We obtain the
estimate wt(t, F) = 0(1 log tl-N) as in the above proof.

With slight modifications the proof may also be applied to Fourier series
over "cylinders," for which Dr is the sum L e2"im.x over {m =
(m1"'" mN) E IN: (mi + ... + mi)I/2 ~ rand Imjl ~ r for j = K + 1'00" Nf,
where 2 ~ K <N. Then IIDrll 1 ~ r lK

-
1)/2(log r)N-K, and we define F =

L}:o Gi q-i(K-I)/2F UV - K), with G; as in the proof of the theorem.

3. COMPACT SYMMETRIC SPACES OF RANK ONE

A general reference for this section is [4].
Let M be a compact Riemannian symmetric space of rank one. We may

write M = G/K, where G is a compact connected simply connected
semisimple Lie group and K is a closed subgroup of G. In the usual way, we
fix a maximal torus T in G and construct the semi-lattice A + of dominant
weights relative to a choice of ~ +, the set of positive roots relative to T.
Under the correspondence between A + and the dual object G of G, it is
known (see, e.g., [14]) that the representations of G of class 1 correspond to
the multiples np, n = 0, 1,... , of a fixed pEA + .

Let fEE, where E = C(M) or L I (M) = L I (M, 11), where 11 is the
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normalized G-invariant measure on M. We are interested m stating best
conditions for the norm convergence of the expansions

CI)

f~ L f* Zn,
n~O

where * is the convolution on L I(M) induced from that on G, and where Zn
is the zonal harmonic function corresponding to np. These conditions will be
given in terms of the moduli of continuity wk(t,f) off, defined by wk(t,f) =
sup{IIAVII: dee, h) ~ t}. Here d denotes the geodesic distance on G, II II the
norm on E and, for h E G and ~ E M,

We shall also need the quantities wk(t,f(S», defined as follows (see [6]):
For X E g, the Lie algebra of G, and fEE, we define Xf: M ~ C by

(Xf)(~) = limf(exp(-tX) . ~) - f(~),
1->0 t

provided that the limit exists in the norm of E. We let E(s) denote the set of
fEE for which Y 1 Y 2 ••• YJ exists for any Y 1 , ••• , Ys E g, and for f E E(S) we
define

n

wk(t,PS» = L wk(t, X i ,Xi2 ••• Xisf),
it •...• is= I

where {XI"'" X n } is a basis of g.
We need two lemmas, which we state in the context of a compact

connected simply connected semisimple Lie group G. We denote by d). and
X). the dimension and character, respectively, of the representation
corresponding to AE A +. We write fJ for the weight ~ La E 91 + a and IAI for
the norm of AE A + induced by the Killing form on g.

LEMMA 1. Let a > I and let €I> be an infinitely differentiable function on
(0, (0) such that €I>(x) = I if x E [1, a] and €I>(x) = 0 if x E (~, 2a). For each
R > 0 let

Then there is a constant C such that lisR III ~ C for all R > O.
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(7)

Proof It is evident that our function f/> satisfies the conditions of
Theoreme 1 of Clerc [3]. We may therefore write

CRn ( )sR(exp H) = D( H) L n a(H + ,) I/I(R IH + 'I),
exp IEte aE\!!+

in the notation of [3], and in our case the function 1/1 must satisfy a condition
II/I(r)1 ~ Cr- n-B. We now use the Weyl formula IlsR111 = C fQ ISR(exp H)I
1D(exp H)I I dH, where Q <;; t is a fundamental domain centred at 0, and
modify the proof of Theoreme 3 in [3]. The integral over {H E Q:
[H[ < l/R} is bounded because of the inequality ISR(X)I~CRn, which
follows easily from the definition of SR' When [HI ~ l/R we consider first
the integral of the term in (7) corresponding to ,= O. To bound this we use
the obvious inequality ICRn (TIaE\!!+ a(H» I/I(R IHI) D(exp H)I ~ CW IHlm
(R IHI)-n-B IHlm = CR -B IHI-l-B. To deal with the remaining terms of (7),
we notice that there are constants C l' CI > 0 such that C I I'I~ IH +'I ~
CII'I for all HEQ and all non-zero 'Ete • Using II/I(r)I~Cr-n, it is
immediate that the relevant integral is bounded by C Lu,o (l/I'I I + m

),

independent of R.

In the next lemma we denote by TrigR (G) the linear span of the
trigonometric polynomials on G corresponding to the weights AE A + with
IA+ PI ~ R. For functions f on G and X E g, the function Xf is defined in the
same way as for functions on M. The authors are indebted here to Michael
Cowling for the key idea of the proof.

LEMMA 2 ("Bernstein's inequality"). If f E TrigR(G), X E 9 and
1~ P ~ 00, then Xf exists, is in TrigR(G), and satisfies

for some constant CG > O.

Proof It is easy to see that AJ exists and is in TrigR(G). To derive the
inequality, we first suppose that X E t, the Lie algebra of T. Let XI ,..., Xl E t
correspond under an isomorphism T~ lr l to the usual partial derivatives. If
now f E TrigR(G), then g = fiT is a linear combination of the characters ~It

of T corresponding to the weights p in the saturated hulls of the dominant
weights ..l. with I..l. +PI ~ R. But ~ corresponds to an exponential

. It
e,(m,l, + ... +mill) for integers m

j
, 1~ j ~ I, satisfying

Imjl = Ip(XJ ~ IpllXjl
~CIA+PI

~CR.

(see [5, Lemma 13.4 C])
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Writing X = atX1+ ... + alXl, it follows from the classical Bernstein
inequality that

IIXgllp~ j~1 lajlllXjgll p~ CR (~I lajl) II gllp ~ CR IXIII gllp,

where II lip denotes the norm in U(T) in the preceding line only.
If /.L is the normalized G-invariant measure on the left coset space G/T and

if x --+ x denotes the canonical map G --+ G/T, then applying the above
calculations to gx: Y --+ f(xy), yET, we have

IIXfll~ = J' I(Xf)(x)jP dx
G

~ (CR IXj)P J JIgxCy)I PtZy d/.L(x)
G/T T

= (CR IXlllfllp)p.

In the case of a general X E g, there is an X o E G and aYE t such that
X=Ad(xo)Y [4, Theorem V.6.4]. Then (Xf)(x)=(Yh)(xo1x) holds for
hex) =f(xox). Thus IIXfll p= II Yhllp~ CR IYlllhilp = CR lXII/flip'

Remark. In the case p = 00, the last result was obtained by Ragozin
[10] using other methods.

In the statement of our next theorem, we shall have in mind the well­
known correspondence between the zonal harmonics zn and normalized
Jacobi polynomials R~·13 = p~.I3/p~.I3(l) for suitable a ~ fJ'~ -! (see, e.g.,
[2]). We shall exclude the case a = -1, as it corresponds to the case
M = If I. See [13] for general facts about Jacobi polynomials.

THEOREM B. Let M be a compact symmetric space of rank one and
dimension d ~ 2, and let a = (d - 2)/2.

(a) If fE E(s) and wz(t,f(S» = o(ta-s+ I/Z) as t--+ 0, for some s ~ 0,
then L:~=o f * zn --+ f in E as N --+ 00.

(b) On the other hand, there exists a function F E E(S), where s is the
largest integer < a + 1, which may be chosen zonal, such that wz(t, F(S) =
O(ta - S + I/Z) as t --+ 0, but such that L:~=0 F * Zn does not converge to F
in E.

Proof For zonal gEL I(M) we have

sup{lIf * gil: fEE and Ilfll ~ 1}

= II gill = sup{llf * gil: fEE, f zonal, and Ilfll ~ I}. (8)
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where
.1

h;; I = I (R~·Il(x))Z (1 - x)1l dx.
• ~I

We know [7, 11] that for suitable Cl' C z > 0 we have
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(9)

Now using Johnen's Jackson-type theorem [6, Folgerung 4.5] and the right­
hand side of (9), it is clear that (a) holds.

To prove (b), we pick an integer a such that aa+ I12CI > Cz. In view of (8)
and (9) we can choose a zonal function Ir E E for each rEIN such that
Il/rll ~ 1 and Il/r * (Dar - Dr)11 ~ Cra+I/Z. By Lemma 1 there is for each
rEIN a central function Pron G such that its Fourier transform Pr satisfies
p,(kp) = 1 for r < k ~ ar and p,(kp) = 0 if k ~ 2ar or k < r12, and such that
IIPrll1 ~ C. Let gr be the function on M corresponding to Pr *!,., where!,. is
the function on G corresponding to Ir' Then, writing gr(k) for (Pr *!,.f (kp),
we have

and

Ilgrll ~ c,
II gr * (Dar - Dr)11 ~ Cr a +112,

(10)

(11 )

(12)

As in the proof of Theorem A we write q = 4a, G; = gqi and define FEE by

00

F = '\' q ~j(a + I/Z)G
j

•

j=O

By (10), F is well-defined, while (11) and (12) show that
jlF* (Daqi-Dqi)II=IIGj* (Daqi-Dqi)llq-j(a+I/Z»C, so that F*D r does
not converge to F. Furthermore, F is zonal, since each/r is zonal and each Pr
is central. By Lemma 2, IIXi,Xi2"'XisGjll~CqjS holds for any il,... ,isE
{l,... , n}, where {X" ...,Xn } is a basis for g. Thus FE E(S), as s < a + 1.
Using Lemma 2 again and the straightforward inequality II,dh/ll ~ IIXIII for
h = expX, we see that 11,d~(Xi,Xi2'" Xi GJI ~ Cd(e, h? q(s+Z). It follows as
in the proof of Theorem A that wz(t, F tS ) = o(ta-s+ I/Z).
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Remark. (i) If d is even, then we may replace W 2 by WI' cf. the first
remark after Theorem A.

(ii) Taking as an example'M=SU(2)=SO(4)jSO(3), our theorem
shows that w 2(t,1) = oCt) is the best possible condition for norm
convergence of the Fourier series of a function J E C(SU(2» or L I (SU(2».
See [8] for related results.

(iii) For M as in Theorem B we are able to provide sharp estimates
for the convolution norm of Dr acting on the zonal LP functions. We can
thus obtain a theorem about the LP convergence of the zonal harmonic
expansions of such functions. This work will appear elsewhere.
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